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M-Calculus

The term language we defined for Higher Order Abstract Syntax is
almost a full featured programming language.
Just enrich the syntax slightly:

t = Symbol
| x (variables)
|t (application)
|

Ax. t (\-abstraction)

There is just one rule to evaluate terms, called [3-reduction:
(M. t)u = tx:i=u]

Just as in Haskell, (Ax. t) denotes a function that, given an
argument for x, returns t.
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Syntax Concerns

Function application is left associative:
fabc = ((fa)b)c
A-abstraction extends as far as possible:
Xa.fab = Ja (fab)

All functions are unary, like Haskell. Multiple argument functions
are modelled with nested \-abstractions:

AXAY. X+ y
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S-reduction

[B-reduction is a congruence:

AX. t) u—g tlx = u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
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S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay. f(y x)) 5 (Ax. x)
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S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay fF(y x)) 5 (Ax. x) =g (Ay. f(y5)) (Ax. x)
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S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay fF(y x)) 5 (Ax. x) =g (Ay. f(y5)) (Ax. x)
=g f ((Ax. x) b)
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S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay fF(y x)) 5 (Ax. x) =g (Ay. f(y5)) (Ax. x)
=g f ((Ax. x) b)
s fb
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Confluence

Suppose we arrive via one reduction path to an expression that
cannot be reduced further (called a normal form). Then any other
reduction path will result in the same normal form.
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Confluence
Suppose we arrive via one reduction path to an expression that

cannot be reduced further (called a normal form). Then any other
reduction path will result in the same normal form.

(Aa. a) (\y. f y)5)

(Ay.fy)5

f5
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Confluence
Suppose we arrive via one reduction path to an expression that

cannot be reduced further (called a normal form). Then any other
reduction path will result in the same normal form.

(Aa. a) (\y. f y)5)

(Ay.fy)5 (Aa. a) (f 5)

f5
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Equivalence

Confluence means we can define another notion of equivalence,
which equates more than a-equivalence. Two terms are
a3-equivalent, written s =, t if they 3-reduce to a-equivalent
normal forms.
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Equivalence

Confluence means we can define another notion of equivalence,
which equates more than a-equivalence. Two terms are
a3-equivalent, written s =, t if they 3-reduce to a-equivalent
normal forms.

Ui
There is also another equation that cannot be proven from
(-equivalence alone, called n-reduction:

(Ax. f x) =y f

Adding this reduction to the system preserves confluence and
uniqueness of normal forms, so we have a notion of
afn-equivalence also.
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Normal Forms

Does every term in A-calculus have a normal form?
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Normal Forms

Does every term in A-calculus have a normal form?

(Ax. x x)(Ax. x x)

Try to B-reduce this! (the answer is that it doesn't have a normal form)
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Why learn this stuff?

@ M-calculus is a Turing-complete programming language.

@ M\-calculus is the foundation for every functional programming
language and some non-functional ones.

@ M-calculus is the foundation of Higher Order Logic and Type
Theory, the two main foundations used for mathematics in
interactive proof assistants.

@ A-calculus is the smallest example of a usable programming
language, so it's good for research and teaching about
programming languages.
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Making \-Calculus Usable

In order to demonstrate that A calculus is actually a usable (in
theory) programming language, we will demonstrate how to encode
booleans and natural numbers as A-terms, along with their
operations.

General Idea

We transform a data type into the type of its eliminator. In other
words, we make a function that can serve the same purpose as the
data type at its use sites.
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How do we use booleans?

Booleans
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Booleans

How do we use booleans? To choose between two results!
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Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”
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A-Calculus

Booleans
How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”

AND = Ap.Aq.pgp
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Booleans
How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”

AND = Ap.Aq.pgp

Example (Test it out!)
Try S-normalising AND TRUE FALSE. J
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Booleans
How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”

AND = Ap.Aq.pgp

Example (Test it out!)
Try S-normalising AND TRUE FALSE. J

What about IMPLIES?
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Natural Numbers
How do we use natural numbers?
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Natural Numbers
How do we use natural numbers? To do something n times!
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Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE M. Ax. f x
Two M. Ax. f (f x)

How do we write Suc?
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Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE M. Ax. f x
Two M. Ax. f (f x)

How do we write Suc?

Suc = An. Af. Ax. f (nf x)
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Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE M. Ax. f x
Two M. Ax. f (f x)

How do we write Suc?
Suc = An. Af. Ax. f (nf x)

How do we write ADD?
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Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE = M. M fx
Two = Af.Ax. f (f x)

How do we write Suc?
Suc = An. Af. Ax. f (nf x)

How do we write ADD?

ApD = AmAn. AMf. Ax. mf (nf x)
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Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE = M. M fx
Two = Af.Ax. f (f x)

How do we write Suc?
Suc = An. Af. Ax. f (nf x)

How do we write ADD?

ApD = AmAn. AMf. Ax. mf (nf x)
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Natural Number Practice

Example
Try B-normalising SuCc ONE.
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Example
Try writing a different A-term for defining Suc.

Example
Try writing a A-term for defining MULTIPLY.
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