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λ-Calculus Church Encodings

λ-Calculus

The term language we defined for Higher Order Abstract Syntax is
almost a full featured programming language.
Just enrich the syntax slightly:

t ::= Symbol

| x (variables)
| t1 t2 (application)
| λx . t (λ-abstraction)

There is just one rule to evaluate terms, called β-reduction:

(λx . t) u 7→β t[x := u]

Just as in Haskell, (λx . t) denotes a function that, given an
argument for x , returns t.
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λ-Calculus Church Encodings

Syntax Concerns

Function application is left associative:

f a b c = ((f a) b) c

λ-abstraction extends as far as possible:

λa. f a b = λa. (f a b)

All functions are unary, like Haskell. Multiple argument functions
are modelled with nested λ-abstractions:

λx .λy . x + y

3



λ-Calculus Church Encodings

β-reduction
β-reduction is a congruence:

(λx . t) u 7→β t[x := u]

t 7→β t ′

s t 7→β s t ′
s 7→β s ′

s t 7→β s ′ t

t 7→β t ′

λx . t 7→β λx . t ′

This means we can pick any reducible subexpression (called a
redex) and perform β-reduction.

Example:

(λx . λy . f (y x)) 5 (λx . x) 7→β (λy . f (y 5)) (λx . x)
7→β f ((λx . x) 5)
7→β f 5
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λ-Calculus Church Encodings

Confluence

Suppose we arrive via one reduction path to an expression that
cannot be reduced further (called a normal form). Then any other
reduction path will result in the same normal form.

(λa. a) ((λy . f y) 5)

(λy . f y) 5

f 5

(λa. a) (f 5)
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λ-Calculus Church Encodings

Equivalence

Confluence means we can define another notion of equivalence,
which equates more than α-equivalence. Two terms are
αβ-equivalent, written s ≡αβ t if they β-reduce to α-equivalent
normal forms.

η

There is also another equation that cannot be proven from
β-equivalence alone, called η-reduction:

(λx . f x) 7→η f

Adding this reduction to the system preserves confluence and
uniqueness of normal forms, so we have a notion of
αβη-equivalence also.
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λ-Calculus Church Encodings

Normal Forms

Does every term in λ-calculus have a normal form?

(λx . x x)(λx . x x)

Try to β-reduce this! (the answer is that it doesn’t have a normal form)
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λ-Calculus Church Encodings

Why learn this stuff?

λ-calculus is a Turing-complete programming language.

λ-calculus is the foundation for every functional programming
language and some non-functional ones.

λ-calculus is the foundation of Higher Order Logic and Type
Theory, the two main foundations used for mathematics in
interactive proof assistants.

λ-calculus is the smallest example of a usable programming
language, so it’s good for research and teaching about
programming languages.

16



λ-Calculus Church Encodings

Making λ-Calculus Usable

In order to demonstrate that λ calculus is actually a usable (in
theory) programming language, we will demonstrate how to encode
booleans and natural numbers as λ-terms, along with their
operations.

General Idea

We transform a data type into the type of its eliminator. In other
words, we make a function that can serve the same purpose as the
data type at its use sites.
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Booleans
How do we use booleans?

To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

True ≡ λa. λb. a
False ≡ λa. λb. b

How do we write conjunction? to “board”

And ≡ λp. λq. p q p

Example (Test it out!)

Try β-normalising And True False.

What about Implies?
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Natural Numbers
How do we use natural numbers?

To do something n times!

So, a natural number will be a function that takes a function f and
a value x , and applies the function f to x that number of times:

Zero ≡ λf . λx . x
One ≡ λf . λx . f x
Two ≡ λf . λx . f (f x)
. . .

How do we write Suc?

Suc ≡ λn. λf . λx . f (n f x)

How do we write Add?

Add ≡ λm.λn. λf . λx . m f (n f x)
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Natural Number Practice

Example

Try β-normalising Suc One.

Example

Try writing a different λ-term for defining Suc.

Example

Try writing a λ-term for defining Multiply.

31


	-Calculus
	

	Church Encodings

