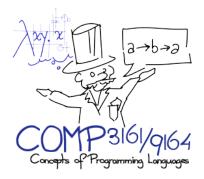
1

э



 λ -Calculus

Thomas Sewell UNSW Term 3 2024

イロト イヨト イヨト イヨト

λ -Calculus

The term language we defined for Higher Order Abstract Syntax is almost a full featured programming language. Just enrich the syntax slightly:

There is just one rule to evaluate terms, called β -reduction:

$$(\lambda x. t) u \mapsto_{\beta} t[x := u]$$

Just as in Haskell, $(\lambda x. t)$ denotes a function that, given an argument for x, returns t.

Syntax Concerns

Function application is left associative:

$$f a b c = ((f a) b) c$$

 λ -abstraction extends as far as possible:

$$\lambda a. f a b = \lambda a. (f a b)$$

All functions are unary, like Haskell. Multiple argument functions are modelled with nested λ -abstractions:

 $\lambda x.\lambda y. x + y$

・ロト・日本・日本・日本・日本・日本・日本

β -reduction is a *congruence*:

$$(\lambda x. t) \ u \mapsto_{\beta} t[x := u]$$

$$\frac{t \mapsto_{\beta} t'}{s \ t \mapsto_{\beta} s \ t'} \ \frac{s \mapsto_{\beta} s'}{s \ t \mapsto_{\beta} s' \ t} \ \frac{t \mapsto_{\beta} t'}{\lambda x. \ t \mapsto_{\beta} \lambda x. \ t'}$$

This means we can pick any reducible subexpression (called a *redex*) and perform β -reduction.

β -reduction is a *congruence*:

$$(\lambda x. t) \ u \mapsto_{\beta} t[x := u]$$

$$\frac{t \mapsto_{\beta} t'}{s \ t \mapsto_{\beta} s \ t'} \ \frac{s \mapsto_{\beta} s'}{s \ t \mapsto_{\beta} s' \ t} \ \frac{t \mapsto_{\beta} t'}{\lambda x. \ t \mapsto_{\beta} \lambda x. \ t'}$$

This means we can pick any reducible subexpression (called a *redex*) and perform β -reduction. **Example**:

 $(\lambda x. \lambda y. f(y x)) 5 (\lambda x. x)$

β -reduction is a *congruence*:

$$\begin{array}{c} (\lambda x. \ t) \ u \mapsto_{\beta} t[x := u] \\ \\ \frac{t \mapsto_{\beta} t'}{s \ t \mapsto_{\beta} s \ t'} \quad \frac{s \mapsto_{\beta} s'}{s \ t \mapsto_{\beta} s' \ t} \quad \frac{t \mapsto_{\beta} t'}{\lambda x. \ t \mapsto_{\beta} \lambda x. \ t'} \end{array}$$

This means we can pick any reducible subexpression (called a *redex*) and perform β -reduction. **Example**:

$$(\lambda x. \lambda y. f(y x))$$
 5 $(\lambda x. x) \mapsto_{\beta} (\lambda y. f(y 5)) (\lambda x. x)$

β -reduction is a *congruence*:

$$(\lambda x. t) \ u \mapsto_{\beta} t[x := u]$$

$$\frac{t \mapsto_{\beta} t'}{s \ t \mapsto_{\beta} s \ t'} \ \frac{s \mapsto_{\beta} s'}{s \ t \mapsto_{\beta} s' \ t} \ \frac{t \mapsto_{\beta} t'}{\lambda x. \ t \mapsto_{\beta} \lambda x. \ t'}$$

This means we can pick any reducible subexpression (called a *redex*) and perform β -reduction. **Example**:

$$(\lambda x. \ \lambda y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \qquad \mapsto_{\beta} \ (\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \\ \mapsto_{\beta} \ f \ ((\lambda x. \ x) \ 5)$$

β -reduction is a *congruence*:

$$\begin{array}{c} (\lambda x. \ t) \ u \mapsto_{\beta} t[x := u] \\ \\ \frac{t \mapsto_{\beta} t'}{s \ t \mapsto_{\beta} s \ t'} \quad \frac{s \mapsto_{\beta} s'}{s \ t \mapsto_{\beta} s' \ t} \quad \frac{t \mapsto_{\beta} t'}{\lambda x. \ t \mapsto_{\beta} \lambda x. \ t'} \end{array}$$

This means we can pick any reducible subexpression (called a *redex*) and perform β -reduction. **Example**:

$$(\lambda x. \ \lambda y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \qquad \mapsto_{\beta} \quad (\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \\ \mapsto_{\beta} \quad f \ ((\lambda x. \ x) \ 5) \\ \mapsto_{\beta} \quad f \ 5$$

イロト イヨト イヨト 一日

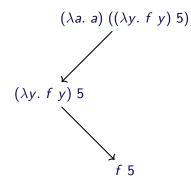
Confluence

Suppose we arrive via one reduction path to an expression that cannot be reduced further (called a *normal form*). Then any other reduction path will result in the same normal form.

<ロ> (四) (四) (三) (三) (三)

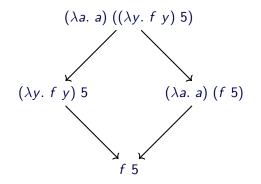
Confluence

Suppose we arrive via one reduction path to an expression that cannot be reduced further (called a *normal form*). Then any other reduction path will result in the same normal form.



Confluence

Suppose we arrive via one reduction path to an expression that cannot be reduced further (called a *normal form*). Then any other reduction path will result in the same normal form.



12

Equivalence

Confluence means we can define another notion of *equivalence*, which equates more than α -equivalence. Two terms are $\alpha\beta$ -equivalent, written $s \equiv_{\alpha\beta} t$ if they β -reduce to α -equivalent normal forms.

Equivalence

Confluence means we can define another notion of *equivalence*, which equates more than α -equivalence. Two terms are $\alpha\beta$ -equivalent, written $s \equiv_{\alpha\beta} t$ if they β -reduce to α -equivalent normal forms.

 η

There is also another equation that cannot be proven from β -equivalence alone, called η -reduction:

 $(\lambda x. f x) \mapsto_{\eta} f$

Adding this reduction to the system preserves confluence and uniqueness of normal forms, so we have a notion of $\alpha\beta\eta$ -equivalence also.

Church Encodings

Normal Forms

Does every term in λ -calculus have a normal form?

Church Encodings

Normal Forms

Does every term in λ -calculus have a normal form?

 $(\lambda x. x x)(\lambda x. x x)$

Try to β -reduce this! (the answer is that it doesn't have a normal form)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why learn this stuff?

- λ -calculus is a *Turing-complete* programming language.
- λ -calculus is the foundation for every functional programming language and some non-functional ones.
- λ-calculus is the foundation of *Higher Order Logic* and *Type Theory*, the two main foundations used for mathematics in interactive proof assistants.
- λ-calculus is the smallest example of a usable programming language, so it's good for research and teaching about programming languages.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Making λ -Calculus Usable

In order to demonstrate that λ calculus is actually a usable (in theory) programming language, we will demonstrate how to encode booleans and natural numbers as λ -terms, along with their operations.

General Idea

We transform a data type into the type of its *eliminator*. In other words, we make a function that can serve the same purpose as the data type at its use sites.

Church Encodings

Booleans

How do we use booleans?

Booleans

How do we use booleans? To choose between two results!

イロト イヨト イヨト 一日

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the first one if it is true and the second one if it is false:

 $\begin{array}{rcl} \text{TRUE} &\equiv& \lambda a. \ \lambda b. \ a \\ \text{FALSE} &\equiv& \lambda a. \ \lambda b. \ b \end{array}$

How do we write conjunction? to "board"

20

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the first one if it is true and the second one if it is false:

 $\begin{array}{rcl} \text{TRUE} &\equiv& \lambda a. \ \lambda b. \ a \\ \text{FALSE} &\equiv& \lambda a. \ \lambda b. \ b \end{array}$

How do we write conjunction? to "board"

AND $\equiv \lambda p. \lambda q. p q p$

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the first one if it is true and the second one if it is false:

 $\begin{array}{rcl} \text{TRUE} &\equiv& \lambda a. \ \lambda b. \ a \\ \text{FALSE} &\equiv& \lambda a. \ \lambda b. \ b \end{array}$

How do we write conjunction? to "board"

AND $\equiv \lambda p. \lambda q. p q p$

Example (Test it out!)

Try β -normalising AND TRUE FALSE.

イロン 不同 とくほど 不良 とうほ

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns the first one if it is true and the second one if it is false:

 $\begin{array}{rcl} \text{TRUE} &\equiv& \lambda a. \ \lambda b. \ a \\ \text{FALSE} &\equiv& \lambda a. \ \lambda b. \ b \end{array}$

How do we write conjunction? to "board"

AND $\equiv \lambda p. \lambda q. p q p$

Example (Test it out!)

Try β -normalising AND TRUE FALSE.

What about IMPLIES?

Church Encodings

Natural Numbers

How do we use natural numbers?

Church Encodings

Natural Numbers

How do we use natural numbers? To do something *n* times!

Natural Numbers

How do we use natural numbers? To do something *n* times!

So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

ZERO $\equiv \lambda f. \lambda x. x$ ONE $\equiv \lambda f. \lambda x. f x$ Two $\equiv \lambda f. \lambda x. f (f x)$

How do we write SUC?

. . .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Natural Numbers

How do we use natural numbers? To do something *n* times!

So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

ZERO $\equiv \lambda f. \lambda x. x$ ONE $\equiv \lambda f. \lambda x. f x$ Two $\equiv \lambda f. \lambda x. f (f x)$

How do we write SUC?

. . .

SUC $\equiv \lambda n. \lambda f. \lambda x. f(n f x)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Natural Numbers

How do we use natural numbers? To do something *n* times!

So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

ZERO $\equiv \lambda f. \lambda x. x$ ONE $\equiv \lambda f. \lambda x. f x$ Two $\equiv \lambda f. \lambda x. f (f x)$

How do we write SUC?

. . .

SUC $\equiv \lambda n. \lambda f. \lambda x. f(n f x)$

How do we write ADD?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Natural Numbers

How do we use natural numbers? To do something *n* times!

So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

ZERO $\equiv \lambda f. \lambda x. x$ ONE $\equiv \lambda f. \lambda x. f x$ Two $\equiv \lambda f. \lambda x. f (f x)$

How do we write SUC?

. . .

SUC $\equiv \lambda n. \lambda f. \lambda x. f(n f x)$

How do we write ADD?

ADD $\equiv \lambda m.\lambda n. \lambda f. \lambda x. m f (n f x)$

29

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Natural Numbers

How do we use natural numbers? To do something *n* times!

So, a natural number will be a function that takes a function f and a value x, and applies the function f to x that number of times:

ZERO $\equiv \lambda f. \lambda x. x$ ONE $\equiv \lambda f. \lambda x. f x$ Two $\equiv \lambda f. \lambda x. f (f x)$

How do we write SUC?

. . .

SUC $\equiv \lambda n. \lambda f. \lambda x. f(n f x)$

How do we write ADD?

ADD $\equiv \lambda m.\lambda n. \lambda f. \lambda x. m f (n f x)$

Natural Number Practice

Example

Try β -normalising SUC ONE.

Example

Try writing a different λ -term for defining SUC.

Example

Try writing a λ -term for defining MULTIPLY.