A-Calculus Church Encodings
OOOOOOO 0000

LA

AL
COMP316/qi64

Concephs. of Prograrmming Lrgpacgpe
A-Calculus

Thomas Sewell
UNSW
Term 3 2024



A-Calculus
©000000

M-Calculus

The term language we defined for Higher Order Abstract Syntax is
almost a full featured programming language.
Just enrich the syntax slightly:

t = Symbol
| x (variables)
|t (application)
|

Ax. t (\-abstraction)

There is just one rule to evaluate terms, called [3-reduction:
(M. t)u = tx:i=u]

Just as in Haskell, (Ax. t) denotes a function that, given an
argument for x, returns t.



A-Calculus Church Encodings
0e00000 0000

Syntax Concerns

Function application is left associative:
fabc = ((fa)b)c
A-abstraction extends as far as possible:
Xa.fab = Ja (fab)

All functions are unary, like Haskell. Multiple argument functions
are modelled with nested \-abstractions:

AXAY. X+ y



A-Calculus hurch Encodings
00®0000 0000

S-reduction

[B-reduction is a congruence:

AX. t) u—g tlx = u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.



A-Calculus Church Encodings
00e0000 0000

S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay. f(y x)) 5 (Ax. x)



A-Calculus Church Encodings
00e0000 0000

S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay fF(y x)) 5 (Ax. x) =g (Ay. f(y5)) (Ax. x)



A-Calculus Church Encodings
00e0000 0000

S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay fF(y x)) 5 (Ax. x) =g (Ay. f(y5)) (Ax. x)
=g f ((Ax. x) b)



A-Calculus Church Encodings
00e0000 0000

S-reduction

[B-reduction is a congruence:

AX. t) ur—g tlx ;= u
B
tgt s s tgt

st»—>55t’ st»—>55’t AX. t =g AX. t/

This means we can pick any reducible subexpression (called a
redex) and perform [-reduction.
Example:

(A Ay fF(y x)) 5 (Ax. x) =g (Ay. f(y5)) (Ax. x)
=g f ((Ax. x) b)
s fb



A-Calculus Church Encodings
000e000 0000

Confluence

Suppose we arrive via one reduction path to an expression that
cannot be reduced further (called a normal form). Then any other
reduction path will result in the same normal form.



A-Calculus Church Encodings
000@000 0000

Confluence
Suppose we arrive via one reduction path to an expression that

cannot be reduced further (called a normal form). Then any other
reduction path will result in the same normal form.

(Aa. a) (\y. f y)5)

(Ay.fy)5

f5



A-Calculus Church Encodings
000@000 0000

Confluence
Suppose we arrive via one reduction path to an expression that

cannot be reduced further (called a normal form). Then any other
reduction path will result in the same normal form.

(Aa. a) (\y. f y)5)

(Ay.fy)5 (Aa. a) (f 5)

f5



A-Calculus Church Encodings
0000800 0000

Equivalence

Confluence means we can define another notion of equivalence,
which equates more than a-equivalence. Two terms are
a3-equivalent, written s =, t if they 3-reduce to a-equivalent
normal forms.



A-Calculus
0000000

Equivalence

Confluence means we can define another notion of equivalence,
which equates more than a-equivalence. Two terms are
a3-equivalent, written s =, t if they 3-reduce to a-equivalent
normal forms.

Ui
There is also another equation that cannot be proven from
(-equivalence alone, called n-reduction:

(Ax. f x) =y f

Adding this reduction to the system preserves confluence and
uniqueness of normal forms, so we have a notion of
afn-equivalence also.




A-Calculus
0000080

Normal Forms

Does every term in A-calculus have a normal form?

Church Encodings
0000



A-Calculus Church Encodings
00000e0 0000

Normal Forms

Does every term in A-calculus have a normal form?

(Ax. x x)(Ax. x x)

Try to B-reduce this! (the answer is that it doesn't have a normal form)



A-Calculus Church Encodings
000000@ 0000

Why learn this stuff?

@ M-calculus is a Turing-complete programming language.

@ M\-calculus is the foundation for every functional programming
language and some non-functional ones.

@ M-calculus is the foundation of Higher Order Logic and Type
Theory, the two main foundations used for mathematics in
interactive proof assistants.

@ A-calculus is the smallest example of a usable programming
language, so it's good for research and teaching about
programming languages.



A Church Encodings
"""" ©000

Making \-Calculus Usable

In order to demonstrate that A calculus is actually a usable (in
theory) programming language, we will demonstrate how to encode
booleans and natural numbers as A-terms, along with their
operations.

General Idea

We transform a data type into the type of its eliminator. In other
words, we make a function that can serve the same purpose as the
data type at its use sites.




A-Calculus
0000000

How do we use booleans?

Booleans

Church Encodings
0®00



A-Calculus
0000000

Booleans

How do we use booleans? To choose between two results!

Church Encodings
0®00



A-Calculus Church Encodings
0800

Booleans

How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”



Church Encodings
0®00

A-Calculus

Booleans
How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”

AND = Ap.Aq.pgp



Church Encodings
0®00

A-Calculus
0000000

Booleans
How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”

AND = Ap.Aq.pgp

Example (Test it out!)
Try S-normalising AND TRUE FALSE. J




Church Encodings
0®00

A-Calculus
0000000

Booleans
How do we use booleans? To choose between two results!

So, a boolean will be a function that, given two arguments, returns
the first one if it is true and the second one if it is false:

TRUE = Ma. \b. a
FALSE = MXa. A\b. b

How do we write conjunction? to “board”

AND = Ap.Aq.pgp

Example (Test it out!)
Try S-normalising AND TRUE FALSE. J

What about IMPLIES?



A-Calculus
0000000

Natural Numbers
How do we use natural numbers?

Church Encodings
00e0



A-Calculus
0000000

Natural Numbers
How do we use natural numbers? To do something n times!

Church Encodings
00e0



Church Encodings

A-Cal
0o 0080

Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE M. Ax. f x
Two M. Ax. f (f x)

How do we write Suc?



Church Encodings
00e0

Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE M. Ax. f x
Two M. Ax. f (f x)

How do we write Suc?

Suc = An. Af. Ax. f (nf x)



Church Encodings
00e0

Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE M. Ax. f x
Two M. Ax. f (f x)

How do we write Suc?
Suc = An. Af. Ax. f (nf x)

How do we write ADD?



A

\-Calculus Church Encodings

0O0000C [e]e] ]o)

Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE = M. M fx
Two = Af.Ax. f (f x)

How do we write Suc?
Suc = An. Af. Ax. f (nf x)

How do we write ADD?

ApD = AmAn. AMf. Ax. mf (nf x)



A

\-Calculus Church Encodings

0O0000C [e]e] ]o)

Natural Numbers
How do we use natural numbers? To do something n times!

So, a natural number will be a function that takes a function f and
a value x, and applies the function f to x that number of times:

ZERO = M. Xx. x
ONE = M. M fx
Two = Af.Ax. f (f x)

How do we write Suc?
Suc = An. Af. Ax. f (nf x)

How do we write ADD?

ApD = AmAn. AMf. Ax. mf (nf x)



A-Calculus
0000000

Natural Number Practice

Example
Try B-normalising SuCc ONE.

Church Encodings
000

Example
Try writing a different A-term for defining Suc.

Example
Try writing a A-term for defining MULTIPLY.




	-Calculus
	

	Church Encodings

